IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

OPERATIONS RESEARCH (Common for ALL BRANCHES)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks						
		UNIT-I			IVIAI KS						
1	Find	the optimum solution to the following LPP	L4	CO1	14 M						
	using Big M method.										
	Maximize, $Z = 4x + 5y$										
	Subject to										
		$2x + 4y \le 8$									
	$x + 3y \ge 9$										
		both x and y are ≥ 0 .									
		OR									
2	a)	Solve the following LP problem by using	L4	CO1	12 M						
		graphical method.									
		Maximize, $Z = 2x_1 + x_2$									
		Subjected to									
		$x_1 + 2x_2 \le 10$									
		$x_1 + x_2 \leq 6$									
		$x_1 - x_2 \leq 2$									
		$x_1 - 2x_2 \le 1$									
		$x_1, x_2 \ge 0$									

Max. Marks: 70

	b) Write the phases in building operations research model.									L1	CO1	2 M	
	UNIT-II												
3	A company needs to distribute its products from 3 L4 CO2 14 M											14 M	
	manufacturing plants to 5 retail stores. The goal is to												
	min	minimize the transportation cost while meeting the											
	den	nand of	f each s	tore.	The tr	ansp	ortati	on	cost	per			
	unit	unit from each plant to each store is as follows											
	(Rs	. x1000)):										
			Store	Store	Store	Store			Capaci				
	1 2 3 4 5 (Units)												
	Plant A 4 2 3 2 6 8 Plant B 5 4 5 2 1 12												
		nt C	5	4 5	<u>5</u> 4	27	$\frac{1}{3}$		12				
			6	-	_	-	-		14				
	Requirement44688(Units)44688												
	What is the optimal transportation cost?												
			-		1	OR						II	
4	a)	A con	nputer c	entre	has 3	expe	ert pr	og	ramm	ers.	L4	CO2	10 M
			entre wa			-	-	•					
			veloped.				-	-					
			studying				-			,			
			oped, est		•	-	U						
			ed by			-							
		-	ammes a		-	101		•• r					
				5 10110		Prog	ramn	ner	·c				
		Programmers Deigeh Defi Dehert											
		RajeshRafiRobertAlpha635											
		Programs Beta				-	2						
		Gama 5 7 8											
		How should the programmes be allocated, one											
		per programmer, so as to minimize the total											
		time o	of develo	ping tl	-	gram)					

	b)	How	do balanced	and unbala	inced assign	ment	12	CO2	4 M				
	0)				L		- 1V1						
		-	ems differ ir on methods?	anu									
		soluti											
5	UNIT-III5a)The arrival rate of customers at a bankingL4CO310 M												
3	a)			_	L4	CUS	10 M						
			er follows										
			-		ervice rate of								
					isson distribu								
				-	ur. Find (i)								
		-	•	•	ers in the sys								
			-		ers waiting in								
		-		e	vaiting time	5 01							
	b)		mers in the symplectic terms in the symplectic terms $\frac{1}{2}$		r babayior	in	L2	CO3	4 M				
	b)		ibe any two two and the angle angle and the angle	5 111	LZ	COS	4 111						
		queur	ng theory.	OR	•								
6	Con	aidor	the following			flow	ТЛ	CO3	14 M				
6			-	-	s and 5 jobs ison's rule ca		L4	COS	14 11				
		-			at is the sche								
			rresponding		at is the sene	uuic							
	anu	Job	1 0	A	Machine 3								
		JUD	11	10	12								
		2	11	8	20								
		3											
		4	15										
			<u>12</u> 20										
		5											
				UNIT	TX 7								
7			• ,	1.0	002	4 M							
7	a)												
	usefulness in game theory.												

	b)	Solve t	he following	gai	me	us	sing	do	minance	L4	CO3	10 M
	principle:											
			Company B									
				I II III IV								
				Ι	-	2	4	0				
			Company A	II	-	4	2	4				
				III		2	4	0				
				IV	•	4	0	8				
0	OR 8 A firm is considering replacement of equipment by											14 14
8			e i					• •	•		CO3	14 M
		A A	ent whose firs									
	scrap value is negligible at any year. Based on the											
	experience, it is found that the maintenance cost is zero during the first year and it increases by Rs. 100											
		Ũ	•					•				
	every year thereafter. When should the equipment be replaced if, <i>interest rate</i> = 10% .											
		<u>-p</u>	1,		JNI'		V					
9	Anr	nual der	nand for su	unflo	wei	r	refi	ned	oil in	L4	CO4	14 M
	Amaravati Mess is 25,000 liters. Ordering cost is											
	Rs.	2,000 pe	er order. Inven	ntory	v ca	rry	ving	cost	t is 25%			
	of t	he purch	ase price/liter	:/yea	r. T	The	e pri	ce t	oreakups			
	are	shown be	elow. Find the	opti	imal	1 0	rder	size	2.			
		Quantity Price (in Rs.) per liter										
			$Q_1 < 5000$	100								
		5000	$\leq Q_2$	90								
OR												
10										CO4	14 M	
	any one of the mechanical engineering problems of											
	your choice.											